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Abstract

This paper shows how to derive a novel set of analytical optimality con-

ditions characterising the solution to an optimal income tax problem in the

dynamic Mirrleesian tradition, under the assumption that a ‘first-order’ ap-

proach to incentive compatibility is valid. The method relies on constructing

a class of perturbations to the consumption-output allocations of agents in a

manner that preserves relevant incentive compatibility constraints. We use it

to provide a new decomposition of the efficiency-equity trade-off at the heart of

these models, and show how the introduction of type persistence should make

the policymaker more tolerant of productive inefficiencies relative to inequity

as time progresses. We additionally show that the well-known result that it is

optimal to deter savings in this class of model when consumption and labour

supply are additively separable in preferences extends to the case in which they

are substitutes, but not the more empirically relevant case of complements.
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1 Introduction

This paper presents a novel approach to analysing dynamic optimal income tax mod-

els, and explores the specific insights that this method yields for optimal public policy.

The setup that we adopt is in the New Dynamic Public Finance tradition. That is,

it builds on the seminal contributions of Mirrlees (1971) and Diamond and Mirrlees

(1978) to consider the best taxation strategy over time for a utilitarian government

that is able to observe its citizens’ income and saving levels, but not their underly-

ing abilities. This is a problem that has been widely studied by macroeconomists

in recent years, with important recent insights provided by Golosov, Troshkin and

Tsyvinski (2011) and Farhi and Werning (2011).1

Our innovation is to provide a new, intuitive analytical characterisation of the

full set of necessary optimality conditions for these problems. Working under the

assumption that the ‘first-order approach’ is valid — so that the set of incentive com-

patibility constraints that binds at the optimum is known — we construct a class of

perturbations to the optimal scheme that will remain within the (binding) constraint

set. The incentive-feasibility of these perturbations implies they cannot raise a re-

source surplus, and optimality conditions then follow by conventional logic. These

conditions are far simpler in form than alternatives that exist in the literature, and

have natural interpretations in terms of the e‘fficiency-equity trade-off’ that is so of-

ten observed in models of optimal taxation. Notably, they also provide a substantial

simplification of the canonical optimality conditions for static Mirrleesian income tax

problems, relative to those derived by Mirrlees himself and by Saez (2001).

One way to understand this technical contribution is in showing how a satisfactory

version of the calculus of variations can be devised for dynamic models of asymmet-

ric information — contrasting with the recursive dynamic programming approaches

more common in the literature. Similar logic has already been applied by Golosov,

Kocherlakota and Tsyvinski (2003) and Kocherlakota (2005), among others, to obtain

the ‘inverse Euler condition’ optimality requirement in isolation;2 the current paper

shows how this logic can be extended much more broadly.

The main limitation of our method is its dependence on the first-order approach

to incentive compatibility — whereby local incentive constraints are substituted for

global. At present the only known conditions under which the validity of this approach

1A thorough survey of the literature can be found in Kocherlakota (2011).
2This condition is a necessary requirement for dynamic optimality when consumption and labour

supply are additively separable in preferences. It links the inverse of the marginal utility of con-
sumption in a given period to its expected value in the next.
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can be assured impose requirements on the properties of solutions obtained under it;3

these conditions cannot, therefore, be confirmed ex-ante, based on the model’s priors

alone. But a number of recent papers have made good progress under the assumption

of first-order incentive compatibility — using this to simplify a recursive programming

problem, and confirming its validity ex-post in any numerical examples. These include

Kapička (2011a), Broer, Kapička and Klein (2011), Golosov, Troshkin and Tsyvinski

(2011) and Farhi and Werning (2011). We follow them, and thus retain their caveats.

In terms of policy, some of our most interesting results relate to optimal savings

wedges. By generalising the inverse Euler condition to situations in which there is

non-separability in preferences between consumption and labour supply we are able

to show that optimal taxes should always deter savings, in a sense that we make clear,

when consumption and labour supply are either substitutes or separable, but that this

does not generalise to the empirically-relevant case in which they are complements.4

In a related result, we show that the long-run ‘immiseration’ that can characterise

dynamic Mirrlees economies with infinitely-lived dynasties and preference separability

again generalises to the case of substitutes, but not to that of complements.

Our work in this regard develops that of Golosov, Troshkin and Tsyvinski (2011),

who have shown how to obtain an alternative generalisation of the inverse Euler

condition in the non-separable case, linking an agent’s marginal utility of consumption

to the future derivative of an indirect utility function that they define. Our analysis

suggests that still greater clarity can be obtained if output is perturbed in a specific

way alongside any given consumption change. In particular, this allows the model’s

key dynamic trade-off to be expressed through the arguments of the direct utility

function alone, from which our results on savings wedges and immiseration follow.

In addition to savings distortions, another important economic variable that fea-

tures in dynamic optimal tax analyses is the degree of productive distortion — that

is, the ‘labour wedge’, between an agent’s within-period marginal rate of substitution

between consumption and production, and the marginal rate of transformation. The

recent paper by Farhi and Werning (2011) places particular focus on this object, char-

acterising its dynamics when type processes are persistent, and focusing particular

attention on the case of separable preferences when labour is supplied isoelastically.

3See, for instance, Theorem 5 in Kapička (2011a). The results and discussion in Pavan, Segal and
Toikka (2011) provide a more general exploration of the first-order approach across a broad class of
dynamic models.

4Basu and Kimball (2002), for instance, emphasise that consumption and labour supply must be
complements if a low elasticity of intertemporal substitution is to be reconciled with no net effects
on labour supply of long-run growth in the real wage.
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In this paper we provide an analogous dynamic relationship to theirs that holds un-

der general preference specifications, and show how it can be interpreted in terms of

a dynamic efficiency-equity trade-off.5 In particular, we show that when types are

persistent the policymaker should be willing to accept more productive inefficiencies

through time relative to a particular measure of the degree of inequality.

Moreover, we are able to be much more precise than other authors about the

nature of the extra productive inefficiencies that the policymaker should be willing

to accept. By focusing on optimality conditions that must hold across types within

any given period, we show that there is greatest incentive to accept extra productive

inefficiency at points where the conditional (Markovian) type distribution is most

sensitive to variations in past type.

This incentive to induce additional inefficiencies derives entirely from type persis-

tence: by contrast, when skills are iid the set of ‘intratemporal’ optimality conditions

characterising allocations is identical to the set of conditions that must hold in a static

optimal income tax model, providing an important mapping between the traditional

‘public economics’ and more recent ‘mechanism design’ literatures.6

Our exploration of this area contrasts slightly with the study of the labour wedge

contained in Golosov, Troshkin and Tsyvinski (2011). These authors derive an ex-

pression for the wedge by use of the maximum principle, in a manner deliberately

analogous to that of Mirrlees (1971) and Saez (2001). Golosov, Troshkin and Tsyvin-

ski emphasise the additional complexity added to the Mirrleesian optimality require-

ments when the problem is cast in a dynamic setting. The point of our paper is to

show that this extra complexity is limited in its scope. At most the dynamic setting

breaks one of the optimality conditions from the static problem. All other differences

follow from the dynamic casting of the model’s constraints, and need not be direct

concerns when assessing optimality.

2 Model setup

The economy is populated by a large number of infinitely-lived agents (dynasties),

each indexed by a position on the unit interval. Labour is the only factor of production

and there are no firms — so agents can be thought of as directly choosing the level

of output that they produce each period via their labour supply decision. Their

5To be clear, Farhi and Werning provide a general expression for the evolution of this wedge
when preferences are non-separable, but only as a function of co-state variables. Our result relates
directly to the arguments of the direct utility function, and thus is comparatively easy to interpret.

6The distinction is drawn by Diamond and Saez (2011).
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preferences over output and consumption profiles from time t onwards are described

by Ut:

Ut = Et

∞∑

s=0

βsu (ct+s, yt+s; θt+s) (1)

where u : R3+ → R. ct+s and yt+s are, respectively, the agent’s consumption and

output levels in period t+s, β ∈ (0, 1) is the dynasty’s time preference parameter, and

θt+s is an idiosyncratic productivity parameter. The productivity parameter belongs

to a set Θ ⊂ R, which is time- and history-invariant. For the entirety of this paper

we work under the assumption that Θ is a countable set with cardinality N ,7 which is

the simplest setting in which to present the main arguments; generalising to the case

in which Θ is a continuous interval of R is non-trivial, but can be done. Expectations

are taken across all stochastic variables relevant to the equilibrium evolution of the

agent’s utility.

We analyse the model as if nature is responsible at the start of time for draw-

ing a distinct element for each dynasty from the infinite-dimensional product space

Θ∞, according to some probability measure on Θ∞, πΘ. These draws are iid across

dynasties. At the start of each period agents are informed of their within-period

productivity, so that at time t they are aware of their complete history of draws to

date, θt ∈ Θt, where θt is a t-length truncation of θ∞. This information is private

knowledge to the agent, so policymakers must provide sufficient incentives to prevent

mimicking across types in any tax system that is established.

2.1 Restrictions on utility

We assume that the utility function is twice continuously differentiable in all of its

arguments, with uc > 0, uy < 0, and uθ > 0, and that the partial Hessian

[
ucc ucy

ucy uyy

]

is negative definite for any given θ. Consumption and leisure are both assumed to be

normal goods, and we additionally impose Inada conditions: limc→∞ uc (c, y; θ) = 0

and limc→0 uc (c, y; θ) =∞ for all non-zero, finite (y, θ) pairs, and limy→∞ uy (c, y; θ) =

−∞ and limy→0 uy (c, y; θ) = 0 for all non-zero, finite (c, θ) pairs. These conditions

ensure an interior solution obtains at all finite horizons.

To maintain the interpretation of θ as an unobservable productivity level we im-

pose a number of additional restrictions on utility. First, if consumption and utility

are jointly held constant as θ is changed then labour supply must implicitly also be

7We allow the possiblity that N =∞.
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being held fixed — and thus the marginal utility of consumption should likewise be

constant. This implies:

ucθ − ucy
uθ

uy
= 0 (2)

Similarly, marginal changes to θ should reduce the marginal disutility associated with

a unit of extra output when consumption and utility (and thus, implicitly, labour)

are jointly held constant. This can be shown to imply:

uyθ > uyy
uθ

uy
> 0 (3)

A variant on the Spence-Mirrlees single-crossing condition is additionally imposed;

this helps to justify the first-order approach in what follows:

u (c′′, y′′; θ′′)− u (c′, y′; θ′′) > u (c′′, y′′; θ′)− u (c′, y′; θ′) (4)

whenever c′′ > c′, y′′ > y′ and θ′′ > θ′. It is easy to show that this implies (but is not

limited to) the usual diminishing marginal rate of substitution between consumption

and labour supply:

−
uy (c, y; θ

′′)

uc (c, y; θ′′)
< −

uy (c, y; θ
′)

uc (c, y; θ′)
(5)

for all (c, y) pairs and any (θ′′, θ′) ∈ Θ2 such that θ′′ > θ′.

2.2 Policy

The policymaker is assumed to observe output and savings, but not underlying types.

Since consumption can be inferred from output and saving levels we can treat con-

sumption and output as the main observables without loss of generality. The role of

policy is to choose, at the start of time, effective tax schedules for all future periods

that will link an individual’s consumption to their output, conditional on their history

of actions to date. The purpose of this choice is to maximise a social welfare function,

defined across the set of possible equilibrium allocations.

Since the revelation principle will apply in this setting,8 we may restrict policy

choice to direct revelation mechanisms that deliver consumption and output bundles

to individuals as functions of direct current and past productivity reports. We denote

by σit : Θ
t → Θ individual i’s report at time t as a function of their actual productivity

8We seek a Bayes-Nash equilibrium of the game played between the policymaker and all individ-
uals whose types may be drawn from Θ∞. The revelation principle states that any such equilibrium
can be supported by a direct revelation mechanism.
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(where this function is measurable with respect to θt), by σi,t : Θt → Θt the sequence

of such reporting plans up to time t, and by σi : Θ∞ → Θ∞ a complete dynamic

reporting plan. We occasionally refer to σi,t (·) as the t-truncation of σi (·).9

For the remainder of the paper we follow the majority of the literature and assume

a utilitarian policy criterion, assessed from the perspective of the initial time period.

The policymaker’s primal choice problem is:

max
{ct(θ∞),yt(θ∞)}

∞

t=1

∫

Θ∞

∞∑

t=1

βt−1u (ct (θ
∞) , yt (θ

∞) ; θt) dπΘ (θ
∞) (6)

subject to ct (θ
∞) and yt (θ

∞) being measurable with respect to θt, together with the

incentive compatibility constraints:

∫

Θ∞

∞∑

s=0

βsu (ct+s (θ
∞) , yt+s (θ

∞) ; θt+s) dπΘ
(
θ∞|θt

)
(7)

≥

∫

Θ∞

∞∑

s=0

βsu (ct+s (σ (θ
∞)) , yt+s (σ (θ

∞)) ; θt+s) dπΘ
(
θ∞|θt

)

which must hold for all t, all θt, and all functions σ : Θ∞ → Θ∞ whose s-truncations

σs (·) are measurable with respect to θs for all s ≥ 1; and finally the resource con-

straint: ∫

Θ∞
[ct (θ

∞)− yt (θ
∞)] dπΘ (θ

∞) +At+1 = RtAt (8)

where At is the quantity of real bonds that the policymaker purchases for time t,

each paying Rt units of real income in that period. The initial value R1A1 is given.

Dynamic solvency requires that lims→∞

[(
s∏

r=1

R−1t+r

)
At+s

]
= 0.

3 The first-order approach to incentive compati-

bility

The set of constraints implied by condition (7) is extremely large. For all type his-

tories at each point in time it requires that truthful reporting should be superior to

mimicking each of the N − 1 other types in Θ. But in general only a very small

subset of these constraints will be binding at the optimum, and it will help the analy-

sis substantially if we can suppress the remainder. This is what is done under the

9We economise on functional arguments and scripts wherever this will not cause confusion.
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‘first-order approach’ to incentive compatibility, increasingly widely applied in the

dynamic Mirrleesian literature.

For all periods t ≥ 1, define σm,t : Θ
t → Θ as the reporting strategy associated

with mimicking a type one lower than the truth in period t:

σm,t
(
θt−1, θt

)
= θ′t

where θ′t = max {θ ∈ Θ : θ < θt}. If θt = min {θ ∈ Θ} then we normalise σm,t (θ
t−1, θt) =

θt. Let σm(t) : Θ
∞ → Θ∞ be the reporting strategy given by truthful reporting in all

periods apart from t, when σm,t (θt) is applied.
10

We further define the value function W (σt (θ
t) ; θt, σ

t−1 (θt−1)), with W : Θ ×

Θ × Θt−1 → R specifying the maximum lifetime utility that could be expected for

an agent whose past reports were given by σt−1 (θt−1), whose current productivity is

θt and whose current report is σt (θ
t). If global incentive compatibility holds then

for a given (θt, σt−1) pair this function must attain a maximum where σt (θ
t) = θt.

Thus instead of choosing directly from among the (difficult to characterise) set of

allocations for which (7) is explicitly asserted for all admissible functions σ, it may be

enough instead to impose a more limited restriction that local movements in the value

of σt (θ
t) away from θt do not raise utility, conditional on any past report history.

In continuous-type models this would generally amount to imposing a zero restric-

tion on the derivative ofW with respect to its first argument. Here types are discrete,

so in principle we could apply constraints ruling out local minicking both ‘upwards’ —

i.e., of those who are marginally more productive — and ‘downwards’. But it is well-

known that the first-best allocation in these models (when the policymaker is able

to observe types perfectly) involves utility decreasing in type.11 Thus we conjecture

that ‘upwards’ constraints will not bind, and simply impose:

W
(
θt; θt, σ

t−1
)
≥W

(
σm,t (θt) ; θt, σ

t−1
)

(9)

This is clearly necessary but not sufficient for full incentive compatibility. But

in some circumstances sufficiency will be guaranteed. We prove the following in the

appendix:

Proposition 1 Sufficiency of first-order approach: Suppose that under a given

10Under Markovian productivities the optimality of a current report does not depend on the
veracity of past reports. Thus we do not need to give special consideration to the question of
whether a deviation at t will change the optimality of reporting truthfully at t+ 1 or subsequently.

11Dasgupta (1982) provides a useful discussion of the intuition behind this result.
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policy strategy the value function W (σt (θ
t) ; θt, σ

t−1 (θt−1)) satisfies increasing differ-

ences in (σt (θ
t) , θt), so that for given σt−1 (θt−1) the inequality

W
(
θ̂′′t ; θ

′′
t , σ

t−1
)
−W

(
θ̂′t; θ

′′
t , σ

t−1
)
> W

(
θ̂′′t ; θ

′
t, σ

t−1
)
−W

(
θ̂′t; θ

′
t, σ

t−1
)

holds for all
(
θ̂′′t , θ̂

′
t, θ

′′
t , θ

′
t

)
∈ Θ4 such that θ̂′′t > θ̂

′
t and θ

′′
t > θ

′
t. Then if condition (9)

holds with equality for all θt ∈ Θ, we must have W (θt; θt, σ
t−1) > W (θ′′t ; θt, σ

t−1) for

all θ′′t ∈ Θ\ (σm,t (θ
t) , θt).

This is a natural translation to our discrete-type setting of Theorem 5 in Kapička

(2011a). Like that result it should really be seen as an intermediate step towards

full sufficiency conditions for the first-order approach, since the value function in any

given setting will itself depend endogenously upon the chosen policy. But it at least

provides a way to check the applicability of the arguments that follow. Moreover,

combined with the single-crossing condition we have enough here to assert something

much stronger about the iid case:

Corollary 1 Suppose that agent-level productivities follow an iid process, and that

the single-crossing condition (4) applies. Then provided a given policy strategy re-

quires higher-type agents with a given history to produce higher output quantities than

lower-type agents with the same history, and simultaneously provides them with higher

consumption, condition (9) holding with equality is sufficient for incentive compata-

bility.

Proof. When productivity shocks are iid, agents’ values from t + 1 on for a given

report σt are identical in expectation at t, irrespective of their true types. Hence

increasing differences will follow provided we have:

u
(
θ̂′′t ; θ

′′
t , σ

t−1
)
− u

(
θ̂′t; θ

′′
t , σ

t−1
)
> u

(
θ̂′′t ; θ

′
t, σ

t−1
)
− u

(
θ̂′t; θ

′
t, σ

t−1
)

for all
(
θ̂′′t , θ̂

′
t, θ

′′
t , θ

′
t

)
∈ Θ4 such that θ̂′′t > θ̂

′
t and θ

′′
t > θ

′
t. The result is then a direct

implication of the single crossing condition, given that output and consumption are

increasing in type.

Whilst this result still depends on output and consumption increasing in type,

this is a much more straightforward condition to confirm ex-post than an increasing

differences restriction on the value function.

In what follows we refer to the problem of policy choice from among the set of

direct revelation mechanisms satisfying condition (9) as the ‘relaxed’ problem, in
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contrast with the ‘general’ problem that imposes (7) directly for all (θt, σ
t−1) ∈ Θt.

Our focus will be on the properties of the solution to this relaxed problem. We

therefore make the following assumption throughout:

Assumption: The solution to the relaxed problem also solves the general problem.

4 A perturbation approach

We now build up some of the formal apparatus required for our analytical approach.

Conditional upon a particular history of reports σt−1, an agent’s period-t con-

sumption and output allocations under any optimal direct revelation mechanism can

be described by an N×2 matrixXt (σ
t−1), with each row in this matrix corresponding

to a given period-t report,12 and the columns listing, in turn, associated consumption

and output levels. Our main strategy is to perturb these allocations by the addition

of one or more of a particular set of N × 2 matrix-valued functions, which in the

generic case we denote by ∆(δ) (with ∆ : R→ R
2N) for some relevant parameter δ.

The perturbed allocations are then described by Xt (σ
t−1) + ∆ (δ). The ∆ functions

are always normalised such that ∆(0) = 0.

In certain cases we will additionally allow changes to be spread through time,

with the consumption and output of agents with a common reported history θt−1

changed at t − 1 as well as at t, according to an analogous function ∆−1 (δ) (with

∆−1 : R→ R
2).

We wish to construct these ∆ and ∆−1 functions so that they satisfy the following

three properties:

1. The perturbed allocations remain candidate solutions to the relaxed problem.

2. ∆(δ) and ∆−1 (δ) should be both continuous and continuously differentiable in

an open neighbourhood of δ = 0.

3. Expected lifetime utility averaged across all agents should remain constant from

the perspective of the initial period for all δ in the neighbourhood of δ = 0.

Under the first-order approach the first property requires that any increase in the

utility that an agent of type θnt would obtain from mimicking an agent of type θn−1t

is offset by at least an equal increase in the utility that the agent of type θnt receives

12We assume that these are ordered in ascending values for θ, with the lowest (reported) period-t
type’s allocation in the first row of X and the highest type’s in the Nth row.
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from truthful reporting.13 This ensures that if the original allocation satisfied the

constraint set of the relaxed problem then the perturbed allocation must likewise.

The second condition is needed for the perturbations to be applied symmetrically

as δ moves above and below 0. It provides a substantial obstacle relative to the first:

if we know that incentive compatibility constraints bind downwards then we know

it always going to be possible to increase the utility of the highest type alone, or

of the top n types in sufficiently skewed proportions, so that these constraints will

remain strictly satisfied. This could be done, for instance, by the provision of extra

consumption to higher-type agents. But perturbations of this form will only ever

give us inequality restrictions — to the effect that the net marginal cost of changing

outcomes in such a manner must be weakly positive. Unless a symmetric downward

shift in the utility of high types is possible, this cannot be converted into a first-order

condition that is stated with equality.

Under the third condition we assume allocations are changed such that the average

value across agents of expected lifetime utility remains constant from the perspective

of the very first period. To a utilitarian policymaker, assessing outcomes from the

perspective of the initial period, there will thus be no direct loss or gain from the

perturbation. A necessary condition for the original allocations to have been optimal

is then that the marginal effect on the resource cost of utility provision associated

with any admissible perturbation should be zero.

4.1 Example: changes at the top

A simple example of a perturbation that satisfies all three of the above requirements is

a change in the allocation of the ‘top’ agent for any given reporting history, such that

this agent remains at a constant utility level. That this is incentive-feasible under

the relaxed problem derives from the fact that no other agent envies the allocation

of the highest type in equilibrium. It provides a straightforward introduction to our

approach, and re-states in the dynamic case the well-known ‘No distortion at the top’

maxim of Mirrlees (1971).

Proposition 2 No distortion at the top: In all time periods t ≥ 1 and for all

past reporting histories θt−1, the constrained-optimal allocation (ct, yt) for the agent

who reports θ′t = max {θ ∈ Θ} satisfies uc (ct, yt; θ
′
t) = −uy (ct, yt; θ

′
t).

13We use superscripts here to index the agents’ types within the set Θ, with θnt increasing in
n ∈ {1, ..., N}
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Proof. Consider a perturbation to the allocation Xt (θ
t−1) given by the N×2 matrix

of functions ∆ : R → R
2N such that the nth row of ∆(δ) equals (0, 0) for all n ∈

{1, ...,N − 1} and the Nth row equals (δ, f (δ)), with the function f : R→ R defined

implicitly by:

u (ct + δ, yt + f (δ) ; θ
′
t) = u (ct, yt; θ

′
t) (10)

By construction this change keeps constant the utility of all truth-telling agents in all

time periods. The utility of agents who report θ′t when not of type θ′t may change, but

these objects do not feature in the relaxed constraint set. Hence we remain within

that constraint set, and so by assumption cannot improve upon the optimal outcome.

Since utility is held constant for all agents the value of the policymaker’s objective

remains unchanged as δ is varied away from δ = 0. The net impact on resources

available in period t is πΘ (θ
′
t|θ

t−1)πΘ (θ
t−1) [f (δ)− δ]. If the original allocation is

optimal then the marginal impact on resources as δ moves away from zero must be

zero. Hence we have:

f ′ (0) = 1 (11)

Since utility for a highest-type truth-teller is unchanged by the perturbation we can

assert the total derivative:

uc (ct, yt; θ
′
t) + uy (ct, yt; θ

′
t) f

′ (0) = 0 (12)

The result follows immediately.

5 Optimal savings distortions

Whilst this ‘no distortion at the top’ result is interesting, it is not all that surprising

given that the top agent is never envied in the relaxed problem. It also clearly relies on

the assumption of a finite upper support on the type distribution.14 More substantive

insights come from considering the model’s optimality requirements elsewhere, as we

do in the remainder of the paper.

We first turn to dynamic optimality, and in particular to optimal savings wedges.

When separability holds between consumption and labour supply we have the well-

known ‘inverse Euler condition’, which can easily be used to show that it is optimal

to deter savings at the margin — so that the current marginal utility of consumption is

14Diamond (1998) and Saez (2001) have shown that optimal tax rates in the static Mirrlees
problem will converge to a strictly positive constant at the upper end of an income distribution with
sufficiently fat tails and no upper support, including a Pareto distribution.
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below its expected future value (after allowing for interest and discounting). But the

implications of non-separability are still relatively unclear.15 This sub-section shows

how to arrive at a relatively simple generalisation of the inverse Euler result, and

explores its implications for optimal savings wedges.

5.1 Definition of α function

To aid the subsequent presentation we define the function α (c, y; θ), with α : R2+ ×

Θ→ R, as follows:

α (c, y; θ) :=
uc (c, y; θ)− uc (c, y; θ

′)

uy (c, y; θ′)− uy (c, y; θ)
(13)

provided θ �= max {θ ∈ Θ}, where θ′ = min {θ′′ ∈ Θ : θ′′ > θ}. If θ = max {θ ∈ Θ} we

simply let α (c, y; θ) = 0.

This α function is useful in understanding the arguments that follow. It gives the

marginal increase in output per unit marginal increase in consumption if the combined

perturbation is to have an equal impact on utility for agents of both types θ and θ′

at the given allocation. Thus it shows how to provide utility at the margin along a

dimension in consumption-output space that will ensure both truth-tellers (θ-types)

and would-be mimickers (θ′-types) receive the same utility increment.

Note that the denominator in (13) is strictly positive. If consumption is additively

separable in utility then the numerator is zero, so α = 0 always holds. When consump-

tion and labour supply are Edgeworth complements we will have α > 0.16 Intuitively

this is because under complementarity the (truth-telling) lower-type agents will re-

ceive a greater marginal benefit from a unit increase in consumption at any given

allocation than the (mimicking) higher-type agents — because of the higher number

of hours the lower types are working to produce the given output level. To offset

this disparity one must exploit the higher marginal disutility of additional output for

lower types, by requiring that greater production should accompany the increased

consumption. Conversely, when consumption and labour supply are Edgeworth sub-

stitutes we must have α < 0.

15The work of Golosov, Troshkin and Tsyvinski (2011) has provided insight into the problem, but
these authors state optimality conditions in terms of an indirect utility function in the non-separable
case. Here we provide the natural analogue in terms of direct utility functions, which proves more
tractable in making qualitative statements about optimal distortions.

16Formally, we take consumption and labour supply to be Edgeworth complements if and only if
ucy > 0, and Edgeworth substitutes if and only if ucy < 0. Since these cross-partials hold θ fixed,
higher output is equivalent to higher labour supply. Note that equation (2) further implies ucθ < 0
for Edgeworth complements and ucθ > 0 for Edgeworth substitutes.
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5.2 A generalised inverse Euler condition

Using this α function we are able to state the following:

Proposition 3 Generalised inverse Euler condition: For all time periods t ≥ 1

and for any reporting history θt ∈ Θt, the constrained-optimal allocations (ct (θ
t) , yt (θ

t))

and Xt+1 (θ
t) for agents who report θt satisfy the following condition:

Rt+1β
1− α (θt)

uc (θt) + uy (θt)α (θt)
=

∑

θt+1∈Θ

πΘ
(
θt+1|θ

t
) 1− α (θt+1)

uc (θt+1) + uy (θt+1)α (θt+1)
(14)

where θt is the most recent entry in θt.17

A full proof is given in the appendix. In the separable case we clearly collapse

down to the usual inverse Euler condition, since α = 0. The innovation here is

to provide a general expression for the marginal cost of incentive-compatible utility

provision that also applies under non-separability — at least for the relaxed problem.

The intuition behind (14) is as follows. Changing consumption and output jointly

at t for the agent with report history θt along the vector (1, α (θt)) increases the

within-period utility of that agent at the margin by uc (θt) + uy (θt)α (θt) units. By

construction it would have the same impact on a mimicking agent with a common

report history to t − 1, but a type one higher at t. The t-dated resource cost of

providing utility in this manner at the margin is 1−α (θt) (any extra output being a

benefit). Hence the term on the left-hand side of (14) is the marginal cost for every

β units of t-dated utility provided, which is converted into t + 1 resources at the

prevailing real interest rate. The term on the right-hand side is, by similar reasoning,

the marginal cost of providing the agent with report history θt with a guaranteed

utility increment of one unit across types at time t+1. This uniform utility provision

preserves incentive compatibility at t and t+1 under the relaxed problem, for reasons

that are essentially familiar from the separable case.18

Note that, like the ‘no distortion at the top’ condition, this result applies for

general type processes — so long as the first-order approach remains valid.

The marginal cost term that features in (14) will feature frequently in the analysis

that follows. For simplicity we will often refer to it as MC (c, y; θ):

MC (c, y; θ) :=
1− α (c, y; θ)

uc (c, y; θ) + uy (c, y; θ)α (c, y; θ)
(15)

17We suppress dependence upon past type reports and current allocations.
18See, for instance, Golosov, Tsyvinski and Werning (2006).
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5.3 Implications for optimal savings wedges

Our generalised inverse Euler condition can be used to make qualitative statements

about optimal tax distortions, and in particular optimal savings wedges. It is well es-

tablished that under preference separability savings are always deterred at the margin

under the optimal allocation, in the sense that the marginal utility of consumption in

period t will be too low for the standard consumption Euler equation to hold between

t and t + 1. Agents collectively defer consumption for the purpose of self-insurance,

but this makes it harder to incentivise them to produce in later years, since their past

savings reduce the desirability of additional earnings.

The presence of the terms in uy in (14) suggests the consumption Euler condition

may not be the best focal point in assessing savings wedges in the more general case.

But the consumption Euler condition is not the only way to state dynamic optimality

under autarky: any combined change in consumption and output at t, coupled with

any distribution of the saved (or borrowed) proceeds at t + 1 between consumption

and output is possible, and must not increase utility at an optimum under autarky.

In particular, in a world with no taxation the following would hold:

uc (θt) + uy (θt)α (θt)

1− α (θt)
= βRt+1

∑

θt+1∈Θ

πΘ
(
θt+1|θ

t
) uc (θt+1) + uy (θt+1)α (θt+1)

1− α (θt+1)
(16)

An agent’s savings decisions are implicitly being distorted whenever equation (16)

does not hold, with saving being discouraged whenever the left-hand side is less than

the right. Part of this distortion may operate via the allocation of work effort between

the different time periods, but this is no less an intertemporal distortion than a wedge

in the consumption Euler condition — particularly as we are not specifying distinct

‘income’ and ‘savings’ tax instruments at present.

The useful feature of equation (16) is that we can be more precise about devi-

ations from this expression at the optimum than we can about deviations from a

consumption Euler equation. Specifically, we have the following.

Proposition 4 Deterred savings: For all time periods t ≥ 1 and for all reporting

histories θt, if consumption and labour supply are either Edgeworth substitutes or

additively separable in preferences then savings will be deterred at the optimum, in

the sense that the constrained-optimal allocations (ct, yt) and Xt+1 for the given θt
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will satisfy the following condition:

uc (θt) + uy (θt)α (θt)

1− α (θt)
≤ βRt+1

∑

θt+1∈Θ

πΘ
(
θt+1|θ

t
) uc (θt+1) + uy (θt+1)α (θt+1)

1− α (θt+1)
(17)

with the inequality holding strictly so long as the object uc(θt+1)+uy(θt+1)α(θt+1)

1−α(θt+1)
varies

for different draws of θt+1 ∈ Θ.

Proof. If consumption and labour supply are substitutes then α (θt) < 0, so for the

preferences we are focusing on we must always have:

uc (θt) + uy (θt)α (θt)

1− α (θt)
> 0 (18)

(recalling that uy < 0). Thus by Jensen’s inequality we have the following:

∑

θt+1∈Θ

πΘ
(
θt+1|θ

t
) [uc (θt+1) + uy (θt+1)α (θt+1)

1− α (θt+1)

]−1
(19)

≥


 ∑

θt+1∈Θ

πΘ
(
θt+1|θ

t
) uc (θt+1) + uy (θt+1)α (θt+1)

1− α (θt+1)



−1

with a strict inequality provided uc(θt+1)+uy(θt+1)α(θt+1)
1−α(θt+1)

varies for different draws of θt+1.

The left-hand side of (19) is also the right-hand side of equation (14); the inequality

in the Proposition then follows from using (14) in (19).

Note that we are not able to state the result for the case of Edgeworth comple-

ments: in that case we cannot rule out the possibility that uc(θt+1)+uy(θt+1)α(θt+1)
1−α(θt+1)

< 0

may hold at the optimum for some values of θt+1, preventing us from applying Jensen’s

inequality. In fact, Lemma 4 below implies savings will be deterred under comple-

ments if types additionally follow an iid process; but this extension does not seem of

much practical importance.

In economic terms, the result suggests the problem of over-saving in the absence

of perfect insurance markets carries over directly to the case of substitutes. But we

cannot be confident that savings should be deterred if the marginal cost of incentive-

compatible utility provision defined in (15) could turn negative. Though that possi-

bility may at first appear unlikely, we cannot rule it out under Markov shock processes

and complementarity.19 This would imply that the deferral of utility would not be

19Numerical simulations confirm that negative values for MC can indeed arise at an optimum.
Details are available on request.
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accompanied by the deferral of resources, and it is perhaps not surprising that in so

distorted an environment the standard resistance to private-sector saving — whether

interpreted as resource or utility deferral — need not apply. Since type persistance and

complementarity appears empirically plausible, the practical implications of this class

of model for optimal savings wedges are perhaps subtler than has been appreciated.

Moving away from its implications for marginal tax wedges, it will also be in-

teresting to consider what our generalised inverse Euler condition implies for the

‘immiseration’-type results that emerge in the special case that Rt ≡ β
−1. It is well

known (see, for instance, Farhi and Werning (2007)) that under separable preferences

almost all agents will see their consumption converge to zero along an optimal path

in this case.20 Again, this result will turn out to generalise to the case of substitutes

but not of complements. But unfortunately the proofs rely on other arguments that

are still to be established, so we defer a full treatment until Section 8.

6 Intratemporal optimality: the case of iid types

This section develops novel insight into the equity-efficiency trade-off at the heart of

the dynamic Mirrleesian model in the simple case that type draws are iid. Specifi-

cally, we derive a further set of N − 1 ‘intratemporal’ optimality conditions that link

allocations across agents with common past type draws. Whilst the iid assumption

is clearly a restrictive one, these conditions must apply irrespective of the dynamic

setting of the model; they therefore also provide fresh insight into the static problem.

They show a simple link between the degree of productive inefficiency the policymaker

should be willing to accept for any given agent, and a measure of the relative welfare

of those whose types are higher.

6.1 Analytical treatment

For the formal arguments it is useful to define the function τ : R2+ × Θ → R by

τ (c, y, θ) := 1 + uy(c,y,θ)

uc(c,y,θ)
. Thus τ is the implicit within-period marginal income tax

rate faced by an agent of type θ receiving an allocation (c, y).

A first step towards obtaining the general optimality conditions we are after is the

following Lemma, the proof of which is in the appendix:

20This ‘immiseration’ was first demonstrated as a potential property of optimal allocations under
asymmetric information in a moral hazard context by Thomas and Worrall (1990).
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Lemma 1 Suppose that type draws are iid across agents and time. Fix a vector

ν ∈ RN (whose nth element is denoted νn) such that:

N∑

n=1

πΘ (θ
n) νn = 0

For all time periods t ≥ 1 and any prior reporting history θt−1 ∈ Θt−1 it is possible

to perturb the set of optimal allocations Xt (θ
t) in a manner that will preserve the

incentive-compatibility constraints of the relaxed problem in all periods whilst raising

the within-period utility of an agent of type θnt by an amount νnδ in period t, for any

scalar δ satisfying |δ| < ε for some ε > 0.

Thus any incremental vector that delivers zero expected utility across types from

the perspective of previous periods can be engineered through changes to within-

period allocations alone, without affecting incentive compatibility at any horizon. Our

aim is to characterise the impact that perturbations of this kind have on resources at

the margin as the scalar δ is moved away from zero. Again, if we start at an optimum

this marginal cost must itself be zero.

It turns out that an important object when assessing the marginal resource cost of

any perturbation is the specific marginal cost to the policymaker of a movement along

the nth agent’s within-period indifference curve by an amount just sufficient to reduce

by a unit the utility that could be obtained by the n+1th agent when mimicking the

nth, normalised by the distance between these two types. This can be interpreted

as the marginal cost to the policymaker of inducing additional productive distortions

into the economy, in order to reduce the mimicking rents that are obtainable by

higher-type agents. We label it DC (c, y, θ) (the ‘distortion cost’):

DC (c, y; θ) :=
τ (c, y; θ) [θ′ − θ]

uc (c, y; θ′) (1− τ (c, y; θ)) + uy (c, y; θ′)
(20)

where θ′ = min {θ′′ ∈ Θ : θ′′ > θ}.21 Ultimately the entire set of necessary optimality

conditions that we derive will consist of relationships between the objectsMC (c, y; θ)

and DC (c, y; θ), expressed at different horizons and for different type draws.

To provide some interpretation, the object in the numerator of (20) is the effective

marginal tax rate levied on the agent of type θ — which is what the policymaker

21If θ is the maximal element in Θ we can arbitrarily define uc (c, y; θ
′) = 1 and uy (c, y; θ

′) = 0
irrespective of c and y. This is for completeness only: we already know that there will be no
distortion at the top, in the sense that τ (c, y; θ) = 0, in this case. It therefore makes sense to fix
DC (c, y; θ) to zero too.
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foregoes at the margin for every unit by which the production of that agent is reduced

— multiplied by the distance between the two relevant types. The denominator is the

number of units by which the utility of mimicking types is changed for every unit

increase in production for those reporting θ, given that the perturbation takes place

along the indifference curve of type θ, whose slope is equal to (1− τ). Its inverse is

thus the number of units by which production must be reduced in order to reduce

minicking utility by one unit. So overall the expression gives the amount of lost tax

revenue for every reduction in a mimicker’s utility by θ′ − θ units.22

The best reading of DC (c, y; θ) is as an efficiency cost of distorting outcomes.

The larger it is, the greater are the deviations from full productive efficiency that

the policymaker is willing to tolerate for agents of type θ in order to hold down the

mimicking rents of higher types. At times we will refer to DC (c, y; θ) and ‘the labour

wedge’ interchangeably, though strictly DC (c, y; θ) is this wedge normalised by the

impact productive distortions are having on higher types’ utility at the margin.

A full consideration of the marginal resource costs associated with general within-

period changes in utilities yields the following, the proof of which is in the appendix:

Proposition 5 Intratemporal optimality (iid case): Suppose type draws are iid

across agents and time. Then for all time periods t ≥ 1 and all reporting histories θt,

the constrained-optimal allocation matrix Xt+1 (θ
t) satisfies the following condition:

∑

θn∈Θ\θN

πΘ (θ
n
t ) (νn+1 − νn)

DC (θnt )

θn+1t − θnt
=
∑

θn∈Θ

πΘ (θ
n
t ) νnMC (θ

n
t ) (21)

where νn is the nth element of any vector ν that satisfies:

N∑

n=1

πΘ (θ
n) νn = 0

The most useful insights from this condition come when one makes specific choices

for the ν vector. To this end, suppose we pick somem ∈ {1, ...,N − 1} and let νn = −1

for all n ≤ m and νn = [πΘ (θ > θ
m)]−1−1 for all n > m. By construction the ex-ante

expected value of νn is zero, and we can state the following corollary:

Corollary 2 Suppose type draws are iid across agents and time. Then for all time

periods t ≥ 1 and all reporting histories θt, the optimal allocation matrix Xt+1 (θ
t)

22The normalisation is useful here because the cost of reducing a higher type’s utility by a given
amount will generally be higher the closer are the two types.
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satisfies the following condition for all m ∈ {1, ...,N − 1}:

πΘ (θ
m
t )

θm+1t − θmt

1

πΘ (θt > θmt )
DC (θmt ) = E [MC (θt) |θt > θ

m
t ]− E [MC (θt)] (22)

E here is the standard expectations operator, under the unique within-period (iid)

distribution for agents with a common type history. (22) gives a relationship between

the expected marginal cost of utility provision across all types at t with the given

history, and the expected marginal cost conditional upon type being higher than θmt .

The condition states that the higher is the gap between these two expected marginal

costs, the more willing the policymaker should be to distort the productive activity

of an agent of type θmt . The cost of providing utility will generally be higher for those

whose types are relatively high, as a by-product of the need to provide incentives. (22)

therefore says that the more privileged are higher types, the greater is the productive

distortion that the policymaker should be willing to tolerate on any given agent.

In this sense it provides a classic statement of the ‘efficiency-equity trade-off’, with

variations in MC (θt) across the type distribution providing a measure of inequality,

and DC (θmt ) a measure of productive inefficiency.23

The first two fractions on the left-hand side of (22) are the equivalent of a ‘hazard

rate’ when types are discrete. The higher is the measure of individuals of type θmt rel-

ative to those further up in the distribution, the greater will be the costs of distorting

the production of this group in order to reduce higher types’ rents. The importance

of this hazard rate in characterising optimal allocations in static Mirrleesian models

has been emphasised since the work of Diamond (1998). It becomes particularly im-

portant if one does not place an upper bound on the support of the type distribution,

in which case the limiting hazard rate at the top of the distribution is of great impor-

tance to the top rate of tax. Here, if we allow N =∞ a non-zero labour wedge at the

top follows whenever DC (θmt ) > 0 for limiting values of m. According to (22) this

should obtain even in the dynamic case provided the hazard rate is bounded above

zero.

It is insightful to contrast our approach in analysing the within-period labour

wedge with that taken by Golosov, Troshkin and Tsyvinski (2011). These authors

show how to adapt the original Hamiltonian approach to the static income tax prob-

lem that Mirrlees (1971) took, and thereby arrive at an augmented expression for the

23Recall that if preferences were separable with log consumption utility we would haveMC (θt) =
c (θt), so the association between variations in marginal cost and consumption inequality is partic-
ularly strong in that case.
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within-period labour wedge that is expressed in terms of compensated and uncompen-

sated labour supply elasticities — deliberately to aid comparison with the equivalent

expression in Saez (2001). Because their Hamiltonian problem is set up in a man-

ner that requires simultaneous choice over current allocations and future (promised)

values this expression for the labour wedge depends in a fairly complex manner on

promised values, even in the iid case. This allows the authors to emphasise the ad-

ditional optimality considerations that are necessary in a dynamic setting relative to

the static problem.

Our approach instead highlights the similarities between static and dynamic prob-

lems. The set of conditions satisfying (22) is just as necessary when dynamics are

absent as when they are present: it is the constraints of the problem rather than its

optimality conditions per se that become more complex when promised utility can be

used to incentivise production. In Section 7 we will see that the same basic intuition

holds when more general Markov shocks are introduced, but with some additional

complication.

6.2 A simple efficiency-equity trade-off

There is a further simple and insightful summary expression can be obtained from

Proposition 5 alone. Suppose that we wish to implement some utility perturbation

vector ν whose nth element takes the form:

νn = θ
n −

∑

θm∈Θ

πΘ (θ
m) θm (23)

This clearly satisfies
∑

θn∈Θ πΘ (θ
n) νn = 0, so it provides an admissible vector by

which we can augment utilities within a time period at the margin, under the main-

tained iid assumption.

For the specified ν vector, condition (21) then becomes:24

E [DC (θt)] = Cov (θt,MC (θt)) (24)

where the expectation and covariance operators are taken under the unique distribu-

tion πΘ, across types with a common shock history prior to t.

This is a remarkably clear statement of the efficiency-equity trade-off that the

Mirrleesian model requires. The term on the left-hand side gives the average value of

the marginal resource cost the policymaker is willing to endure in order to hold down

24Recall that ‘no distortion at the top’ implies DC
(
θNt
)
= 0.
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the utility rents that are enjoyed by high-type agents: higher values forDC (θnt ) imply

higher productive distortions. The term on the right-hand side tracks the degree of

cross-sectional inequality in the economy: the covariance between θnt and MC (θnt )

will be greater the greater is the degree of inequality in welfare across θnt draws. So

(24) states that inequality should be tolerated in proportion to the resource costs of

reducing it.

6.3 Optimal effective income tax rates

The results of the earlier analysis also allow us to demonstrate a further quite general

result with important economic implications, which does not in fact require the iid

assumption on type draws. The proof is in the appendix.

Proposition 6 Non-negative income taxes: For all time periods t ≥ 1, all re-

porting histories θt−1 and all θnt ∈ Θ the implicit marginal tax rate τ (θnt ) satisfies

τ (θnt ) ≥ 0.

So unlike the savings distortion the direction of the intratemporal distortion on

production is completely unambiguous: the optimal effective marginal income tax rate

is never negative. In a sense the result should not be surprising. Since a ‘downwards’

movement along the within-period indifference curve of lower types reduces the utility

of higher-type mimickers, it is always better to move to a point where this indfference

curve has a slope ( dc
dy
) that is less than one — accepting some productive distortion

as the cost of greater equity. Subsidising work would require still higher utility to be

granted further up the type distribution, whilst incurring a positive cost.

7 Optimal distortions with persistent types

Whilst the iid model is instructive it is plainly unrealistic as a description of the

way individuals’ earnings capacities evolve in practice. Practical implementability

requires that we analyse persistence in types.25 The simplest way to do this is to

assume the productivity measure πΘ incorporates a general Markov structure, so

that πΘ (θt+1|θ
t) = πΘ (θt+1|θt).

This gives us an extra complication. For agents with reporting history θt we may

be able to define a perturbation to allocations at t + 1 that has zero impact on the

25A far more substantive generalisation would be to allow for active human capital accumulation.
Kapička (2011b) provides important work in this vein.
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expected utility at t of a relevant truth-telling agent, but the probability distribution

under which this expectation is calculated is now particular to that agent. An agent

who is, at the optimum, on the cusp of falsely reporting θt will take expectations of

the future returns from a mimicking strategy under a different probability distribution

to the truth-teller — and thus may well experience a change in expected utility even

though the truth-teller does not. This would undermine incentive compatibility at t.

For this reason the local incentive compatibility constraints become relatively hard

to satisfy in the Markov case.

But note that some of the earlier results will go through unchanged. In particular,

the Markov and iid cases will be equivalent to one another when we consider pertur-

bations to the allocations at t+ 1 and (possibly) t of any agent whose allocation was

not ‘envied’ at t. This could either be because t+1 is the first period of the model, or

because the agent’s type was the highest possible at t. Proposition 5 will then extend

directly to these cases, and the optimality conditions set out in Corollary 2 will again

apply. What remains is to understand how optimality conditions are affected when

agents’ prior allocations were envied.

We show that there are two important ways in which optimality requirements

change in this case. First, an additional intertemporal condition arises, ensuring

that the cost to the policymaker of preventing mimicking is spread optimally through

time. This condition determines the optimal dynamics for productive distortions, and

generalises the recent results of Farhi and Werning (2011) relating to the dynamics

of the labour wedge. Second, and offsetting this, we lose one of the intertemporal

conditions: equation (22) holds in a ‘first-differenced’ form only. We consider these

points in turn.

7.1 Intertemporal optimality: the dynamics of productive

distortions

The richer dynamics introduced into the model when types are persistent have al-

ready been given much attention in the work of Farhi and Werning (2011). Here we

generalise their study of the dynamics of the labour wedge, and explain why it is

usually desirable to give greater emphasis to equity concerns relative to efficiency as

time progresses.

Before stating the main argument we must provide an equivalent to Lemma 3

to confirm incentive compatibility for the types of dynamic perturbations we will

consider. We have the following, the proof of which is in the appendix:
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Lemma 2 For all time periods t ≥ 1, all reporting histories θt such that θt = θ
n
t �=

θNt , and any vector ν that satisfies the two restrictions:

∑

θm∈Θ

πΘ
(
θmt+1|θ

n
t

)
νm = 0

and ∑

θm∈Θ

πΘ
(
θmt+1|θ

n+1
t

)
νm = 1

it is possible to perturb the constrained-optimal allocations (ct (θ
t) , yt (θ

t)) andXt+1 (θ
t)

in a manner that will preserve the incentive compatibility constraints of the relaxed

problem in all periods whilst raising the within-period utility of an agent of type θmt+1
by an amount νmδ at t + 1 for any δ satisfying |δ| < ε for some ε > 0 and leaving

equilibrium utility in all other periods constant.

This result immediately takes us to the additional dynamic condition that we

desire. The proof is in the appendix.

Proposition 7 Dynamic cost-spreading: For all time periods t ≥ 1 and any re-

porting history θt such that θt = θ
n
t �= θ

N
t , the constrained-optimal t+1 allocation ma-

trixXt+1 (θ
t) together with the constrained-optimal period-t allocation pair (ct (θ

t) , yt (θ
t))

must satisfy the following condition:

βRt+1
DC (θnt )

θn+1t − θnt
=

∑

θm∈Θ\θN

πΘ
(
θmt+1|θ

n
t

)
(νm+1 − νm)

DC
(
θmt+1

)

θm+1t+1 − θ
m
t+1

(25)

−
∑

θm∈Θ

πΘ
(
θmt+1|θ

n
t

)
νmMC

(
θmt+1

)

where νm is the mth element of any vector ν that satisfies the two restrictions given

in Lemma 2.

In general this condition seems likely to result in greater conditional equality at

t+ 1 the higher is the productive distortion for an agent at t (measured by DC (θ))

— where equality here is considered across agents with a common report history up

to t. If it is worthwhile to induce productive distortions at t to reduce mimicking

rents then it should also be worthwhile reducing utility disparities across types at

t+ 1 to the same end: ‘twisting’ utility allocations in this way is to the detriment of

would-be mimickers in period t, whose assessment about their period-t+1 type draw
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is relatively optimistic by comparison with truth-tellers.26

The next sub-section clarifies further the sense in which productive efficiency is

given less and less weight through time, and in the process provides a novel expression

for the dynamics of the labour wedge, and of the policymaker’s willingness to trade

off equity and efficiency through time.

7.2 Equity, efficiency, and the dynamics of the labour wedge

To extract a more interpretable expression from (25) we can fix a utility increment

vector ν for application at t+ 1 whose mth entry is given by:

νm =

{
θmt+1 −

∑
θt+1∈Θ

πΘ (θt+1|θ
n
t ) θt+1

}

∑
θt+1∈Θ

πΘ
(
θt+1|θ

n+1
t

)
θt+1 −

∑
θt+1∈Θ

πΘ (θt+1|θnt ) θt+1
(26)

The denominator here is the difference in expected type in period t between those

who drew θn+1t and those who drew θnt in the previous period (with n < N), whilst

the numerator is the difference between θmt+1 and its expected value for the previ-

ous period’s truth-tellers. It is clear by inspection that this vector will satisfy the

requirements of a ν vector in Proposition 7. Re-writing condition (25) then gives:

βRt+1DC (θ
n
t ) =

E [DC (θt+1) |θ
n
t ]− Cov [(θt+1,MC (θt+1)) |θ

n
t ]{

E
[
θt+1|θ

n+1
t

]
− E [θt+1|θnt ]

}/ (
θn+1t − θnt

) (27)

where the conditional expectation and covariance terms are again taken across types

with common productivity draws to t.27

The term on the left-hand side of the equation is a measure of the marginal

efficiency cost of the labour tax wedge imposed in period t on type θnt . Proposition

6 implies this object will always be non-negative. The term on the right-hand side

can be digested in pieces. The fraction’s numerator is familiar from equation (24)

above: it gives the difference between the average of the marginal efficiency costs of

within-period tax distortions implemented in period t+1, and the costs from excessive

26Golosov, Troshkin and Tsyvinski (2011) provide similar intuition in accounting for an augmented
weighting structure when controlling promised utilities in the Hamiltonian problem that they study.
This places more weight on utility provided in states of the world for which there is a relatively large
difference in the probability of occurrence between truth-tellers and mimickers from the previous
period. The authors identify this as a more redistributionary force, though their analytical approach
is very different from ours: they do not provide a direct summary relationship comparable to equation
(27) below.

27Farhi and Werning (2011) provide a special case of this condition under the assumptions that
consumption and labour supply are separable in preferences, the disutility of work is isoelastic, and
productivity is AR(1).
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inequality. The denominator, meanwhile, is the difference in the expected type draw

for t+1 between agents whose t-period draws are θn+1t and θnt respectively (relative to

the absolute difference between these types). It is a natural measure of the persistence

of productivity draws.

Taken together, (27) has a clear message: persistent shocks mean the policymaker

should implement more equality for any given within-period efficiency cost. This is

what it means for the numerator of the fraction to be positive, which — according

to (27) — it must be under any optimal scheme whenever the tax wedge was strictly

positive in the prior period. Note that this relatively high equality only holds across

agents with a common shock history up to period t; it need not carry over to the

economy as a whole. Nonetheless, it seems likely to be behind the simulation result

obtained under separable preferences by Farhi and Werning (2011) that optimal tax

wedges drift upwards on average over time when log type draws are I(1).

Interestingly Farhi and Werning focus on the cross-sectional profile of the labour

wedge to argue that the extra dynamic complications introduced by (27) result in more

regressive outcomes relative to the iid case — since marginal taxes tend to drift upwards

most over time for those who receive relatively low type draws. The interpretation we

provide here appears quite the opposite: persistent shocks introduce a bias towards

equity relative to efficiency. But this is because high marginal tax rates at any

given point in the income distribution are a way for average rates to be increased

higher up. The reason for inducing within-period labour supply distortions in the

first place is to reduce the compensation that more productive agents must be paid

to incentivise them to work. Hence the regressivity in marginal rates identified by

Farhi and Werning is really just a means for engineering greater progressivity in utility

outcomes in equilibrium: the two interpretations are not inconsistent.

Two other interesting observations can be made about (27). First, note that it has

a ‘reset’ feature. If at any point in time t the highest productivity θNt is drawn then

the set of optimality conditions at t+1 becomes identical to the iid case. This implies

in particular that equation (24) will hold: the numerator of the fraction on the right-

hand side of (27) will equal zero, with efficiency and equity considerations exactly

balancing. So any average drift towards greater equality always has the potential to

be dominated by ‘no distortion at the top’.

Second, if type draws are I(1) and the interest rate is equal to the inverse of the

discount factor then the objectDC (θ) will in general increase over time. In this event

the denominator of the fraction on the right-hand side is one, and since the covariance

term will be (at least weakly) positive the equation reduces to a random walk plus a
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stochastic drift term. Thus full persistence in type draws translates into persistence

plus drift in labour wedges. This is a generalisation of the ‘tax smoothing’ result

of Golosov, Tsyvinski and Werning (2006), who showed that labour wedges should

be constant through time in the event that type draws are drawn ‘once and for all’

in the first period of the model. In that case there is no variation in type draws at

t + 1 for any given draw at t, implying the covariance term drops from (27) whilst

the conditional expectations reduce to certainties. Allowing continued uncertainty

instead biases us away from tax smoothing and towards continued upwards drift in

the labour tax wedge.

7.3 Intratemporal optimality: a dimension lost

If we are considering a perturbation that applies exclusively in period t + 1 to the

allocations of agents with a common reporting history θt, such that θt �= θ
N
t , we need

to make sure that this perturbation does not affect the incentive at t for truthful

reporting — either for an agent whose true type is θnt or for one whose true type is θn+1t

(and thus is tempted to mimic θnt ). This implies that the expected utility consequences

of the perturbation must be zero under both the ‘truth-teller’s’ probability measure

πΘ (·|θ
n
t ) and the ‘mimicker’s’ measure πΘ

(
·|θn+1t

)
. In the iid case we were able

implement any vector of marginal utility increments across agents at t + 1 provided

this vector satisfied
∑

θn∈Θ πΘ (θ
n) νn = 0 for the common measure across t+1 types,

πΘ.

When shocks are Markov the probability measure across t + 1 types is no longer

common. But we can preserve incentive compatibility for both truth-tellers and

relevant mimickers provided we perturb utilities at the margin according to a vector

ν that jointly satisfies the two conditions:

∑

θm∈Θ

πΘ
(
θmt+1|θ

n
t

)
νm =

∑

θm∈Θ

πΘ
(
θmt+1|θ

n+1
t

)
νm = 0 (28)

In general one can always find N − 2 linearly independent ν vectors for which this

condition is satisfied, as against N − 1 that satisfy the single restriction in the iid

case. Thus the movement to Markov probabilities denies us the capacity to carry out

intratemporal perturbations in precisely one dimension.

Lemma 1 can now be easily adjusted to cover intratemporal perturbations in the

Markov case:

Lemma 3 For all time periods t ≥ 1, all reporting histories θt such that θt = θ
n
t �=
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θNt , and any vector ν that satisfies (28) it is possible to perturb the constrained-

optimal allocations Xt+1 (θ
t) in a manner that will preserve the incentive compatibility

constraints of the relaxed problem in all periods whilst raising the within-period utility

of an agent of type θnt+1 by an amount νnδ at t + 1 for any δ satisfying |δ| < ε for

some ε > 0 and leaving utility in all other periods constant.

We omit a proof, since the logic is identical to that of Lemma 1, except that it

is applied here only to the subset of within-period perturbations admissible in the

Markov case. The required intratemporal optimality conditions can then be stated

formally:

Proposition 8 Intratemporal optimality (Markov case): For all time periods

t ≥ 1 and any reporting history θt such that θt = θ
n
t �= θ

N
t , the constrained-optimal

allocation Xt+1 (θ
t) satisfies the following condition:

∑

θm∈Θ\θN

πΘ
(
θmt+1|θ

n
t

)
(νm+1 − νm)

DC
(
θmt+1

)

θm+1t+1 − θ
m
t+1

=
∑

θm∈Θ

πΘ
(
θmt+1|θ

n
t

)
νmMC

(
θmt+1

)

(29)

where νm is the mth element of any vector ν that satisfies (28).

The proof again repeats earlier arguments so is omitted. The additional restriction

on ν in (28) relative to the single requirement imposed for Proposition 5 essentially

limits us to a ‘first-differenced’ equivalent to Corollary 2, which is insightful in spite

of its unwieldiness:

Corollary 3 For all time periods t ≥ 1 and any reporting history θt such that θt =

θnt �= θ
N
t , the constrained-optimal allocation Xt+1 (θ

t) satisfies the following condition

for all m ∈ {1, ...,N − 2}:

{
πΘ(θmt+1|θnt )
θm+1t+1 −θ

m
t+1

1

πΘ(θt+1>θmt+1|θnt )
DC

(
θmt+1

)
−
[
E
[
MC (θt+1) |θt+1 > θ

m
t+1

]
−E [MC (θt+1)]

]}

[
πΘ(θt+1>θmt+1|θn+1t )
πΘ(θt+1>θmt+1|θnt )

− 1

]

=

{
πΘ(θm+1t+1 |θ

n
t )

θm+2t+1 −θ
m+1
t+1

1

πΘ(θt+1>θm+1t+1 |θ
n
t )
DC

(
θm+1t+1

)
−
[
E
[
MC (θt+1) |θt+1 > θ

m+1
t+1

]
−E [MC (θt+1)]

]}

[
πΘ(θt+1>θm+1t+1 |θ

n+1
t )

πΘ(θt+1>θm+1t+1 |θ
n
t )

− 1

]

(30)

where the expectations are taken using the distribution of agents truthfully reporting

θnt in period t, across types with the common history θt.
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In the iid case we had a within-period equity-efficiency trade-off at each point in

the type distribution, linking the optimal degree of productive distortion at that point

to the comparative welfare of higher types — as captured by the difference between

conditional and unconditional expectations of MC (θ). Here this is replaced by a

relationship between deviations from that earlier efficiency condition, which would

have set the numerator of each of the main fractions in (30) to zero. Moreover,

it follows straightforwardly from Propositions 6 and 7 that the numerator of the

main fractions in (30) will be positive whenever the type distribution satisfies a first-

order stochastic dominance property — so that πΘ
(
·|θn+1t

)
first-order stochasically

dominates πΘ (·|θ
n
t ).

28 That is, persistence provides a reason to give greater concern

to equity relative to efficiency, so that DC (θ) is elevated relative to the difference

between conditional and unconditional expectations over MC (θ).

The Corollary implies that, all things equal, this greater weight on equity should

be most enhanced in regions of Θ for which the conditional distributions π (·|θnt ) and

π
(
·|θn+1t

)
differ the most — that is, for which the denominator in the main fraction is

high. This again derives from a concern to minimise the rents from past mimicking:

those of type θn+1t will have less of an incentive to report θnt the lower are the future

returns they can expect from this strategy. This makes the policymaker particularly

content to restrict welfare at t + 1 across regions in the type space to which the

distribution conditional on θn+1t attaches relatively large weight. To do this requires

additional productive distortions at values for θmt+1 for which the ratio
πΘ(θt+1>θmt+1|θn+1t )
πΘ(θt+1>θmt+1|θnt )

is high, since these productive distortions are the means by which the mimicking rents

of types above θmt+1 can be reduced.29

8 Martingale convergence results

The final major area on which we focus is the evolution of optimal outcomes over

time, and in particular at the limit as the time horizon becomes large. Suppose that

the real interest rate were in all time periods equal to the inverse of the discount

28To see this note that when first-order stochastic dominance holds a scalar multiple of the ν
vector used to obtain Corollary 2 will be admissible under Proposition 7. The result then follows
from the fact productive distortions are non-negative — an immediate implication of Proposition 6.

29Exploiting differences in distributions between types in this fashion shares interesting parallels
with the work of Crémer and Mclean (1988) in the domain of auction theory. These authors showed
all information rents could potentially be eliminated by an auctioneer who exploited variations in
probability assessments across agents with distinct valuations. Our optimal tax problem does not
assume quasi-linear utility, which contributes to the strength of the Crémer-Mclean result, but the
intuition otherwise appears very similar.
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factor β. Then the generalised inverse Euler equation can be written as:

1− α (θt)

uc (θt) + uy (θt)α (θt)
=

∑

θt+1∈Θ

πΘ (θt+1|θt)
1− α (θt+1)

uc (θt+1) + uy (θt+1)α (θt+1)
(31)

That is to say, we have a martingale inMC (θ), which we have chosen to write out in

full here. When preferences are separable between consumption and labour supply,

α (θt) = 0 holds, and the expression collapses to a martingale in the inverse of the

marginal utility of consumption — an object that is bounded below at zero. As many

authors have observed, this boundedness allows the application of Doob’s martingale

convergence theorem, which implies almost-sure convergence in the inverse marginal

utility of consumption to a finite (possibly random) limit. If one can also show

that the optimum will never involve consumption staying fixed at a non-zero value,

convergence to zero consumption — ‘immiseration’ — becomes the only possibility.

To generalise these results to the case at hand we need to put a bound on the

object in (31) for preference structures beyond the separable case. When consumption

and labour supply are Edgeworth substitutes this is straightforward. But when they

are Edgeworth complements our scope for doing so is limited. Taken together we

have the following result.

Lemma 4
1−α(θt)

uc(θt)+uy(θt)α(θt)
> 0 always holds under an optimal plan that solves the

restricted problem whenever consumption and labour supply are (a) Edgeworth substi-

tutes, or (b) additively separable. Additionally if consumption and labour supply are

Edgeworth complements 1−α(θt)
uc(θt)+uy(θt)α(θt)

> 0 will hold when type draws are iid.

Proof. With separability α (θt) = 0, and uc (θt) > 0 is enough. When consumption

and labour supply are Edgeworth substitutes we have α (θnt ) < 0, and the result is

again trivial (recalling uy < 0). When consumption and labour supply are Edgeworth

complements and type draws are iid the reasoning is far more involved, and we relegate

it to an appendix.

We note in passing that this Lemma allows a slight strengthening of Proposition

4, which goes through wheneverMC (θ) is bounded below at zero: we can now assert

that it will be optimal to deter savings (in the sense used in that Proposition) in the

case of complements if type draws are iid.

Having put a zero lower bound on the marginal cost of utility provision for these

specific cases, when Rt = β−1 for all t a direct application of Doob’s martingale

convergence theorem implies the object 1−α(θt)
uc(θt)+uy(θt)α(θt)

must converge almost surely

along all realisations of θ∞ to some valueX ∈ [0,∞), whereX is potentially a random
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variable. We want to be able to say more about the value of X. In fact, it turns out —

as in the separable case — that X must equal zero. The next Proposition establishes

this.

Proposition 9 Convergence: Suppose Rt = β
−1 for all t ≥ 1. Then 1−α(θt)

uc(θt)+uy(θt)α(θt)

a.s.
→

0 holds under any optimal plan that solves the restricted problem unless consumption

and labour supply are Edgeworth complements and productivities follow a non-iid

process.

Proof. See appendix.

This result is an obvious generalisation of the ‘immiseration’ results obtained by

studying convergence of the standard inverse Euler condition. Moreover, almost sure

consumption immiseration is a direct implication of this result when one recalls that
1−α(θt)

uc(θt)+uy(θt)α(θt)
= 1

uc(θt)
when θt = θ

N
t (the highest type): the outcome for an agent

who draws the top productivity parameter in the tth periodmust be zero consumption

(almost surely) at the limit as t becomes large, and incentive compatibility then

demands that all lower types with the same history must have a still worse lot. So

the more complicated nature of the expression for the marginal cost of utility provision

in the non-separable case does not undermine the extreme predictions regarding long-

run consumption when martingale convergence can be applied.

Perhaps the more surprising implication of this section, though, is that when pro-

ductivity follows aMarkov process and consumption and labour supply are Edgeworth

complements — so that those who are working longer hours with a given level of con-

sumption have a higher marginal utility of consumption — we cannot put a zero lower

bound on the marginal cost of utility provision. Indeed, this marginal cost may turn

negative. We have been able to confirm this through simple numerical simulations

of a finite-horizon model,30 in which the choices of low types are, at the optimum,

distorted sufficiently far away from a point of productive efficiency that even move-

ment along a vector giving equal consumption and output increments would still raise

their utility by more than it would raise the utility of higher-type mimickers, owing

to the strength of complementarities. Thus output must be increased by more than

consumption at the margin to provide balanced utility increments to mimickers and

truth-tellers.

30Details available on request.
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9 Conclusion

This paper shows that substantial original insight into a dynamic optimal income tax

problem of the type studied in the New Dynamic Public Finance literature can be

obtained by applying a carefully-chosen set of perturbations to optimal allocations,

under the assumption that the ‘first-order approach’ to incentive compatibility is

valid. Our main results are as follows.

First, we have been able to provide a novel interpretation of the ‘equity-efficiency’

trade-off in the class of models considered, showing how the expected value of the

resource cost from labour supply distortions should be linked to a measure of the

covariance between agents’ types and the marginal cost of providing utility to them

in an incentive-compatible manner. Since this marginal cost will generally be higher

the greater the quantity of utility an agent already enjoys, this covariance term is

interpretable as a measure of inequality. In the simple case of iid productivities it is

best to set this equity measure equal to the expected value of productive distortions

across agents with a common type history.

More surprisingly, we also show that when productivities are persistent through

time the policymaker should be willing to tolerate more and more productive ineffi-

ciency across types with a common history, relative to the degree of inequality. The

associated optimality condition suggests that provided persistence is great enough,

effective marginal tax rates should drift upwards through time on average. This re-

sult has already been obtained numerically, and analytically under specific preference

assumtions, by Farhi and Werning (2011). Here we show the extent to which it will

generalise, and in particular show that there is an incentive to raise productive distor-

tions most at those points in the type distribution where there is the greatest disparity

between distribution functions of agents whose types were adjacent in the preceeding

time period. These results derive from an incentive to reduce the mimicking rents of

higher types by exploiting differences in their distribution functions relative to those

that they would mimic.

Turning to optimal savings taxes, it is now well known that in the event of sepa-

rability between consumption and labour supply it is optimal to apply a positive tax

wedge to savings, in the sense that the marginal utility of consumption in period t is

below its expected value at t+1 (allowing for discounting and the interest rate); this

follows from the well-known ‘inverse Euler equation’. We have been able to generalise

this result, and confirm that savings are always deterred at the optimum (in an eco-

nomically meaningful sense) unless consumption and labour supply are Edgeworth
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complements and productivity draws are non-iid — but in the case of persistence and

complementarity an effective marginal subsidy to savings could not be ruled out.

This latter result has strong connections with a further area that we have investi-

gated: allocations in the long run. Once again, except in the case that consumption

and labour supply are Edgeworth complements and productivity draws are non-iid, we

have been able to put a zero lower bound on the marginal cost of incentive-compatible

utility provision — which in turn will follow a martingale process in the event that the

real interest rate equals the inverse of the discount factor β. Martingale convergence

theorems then imply almost-sure immiseration for all agents in the economy. But

with complementarity and Markov shocks the marginal cost of utility provision may

turn negative, and so immiseration need not take place.

Together these results frame as an important empirical question the exact nature

of consumers’ labour supply-consumption preference structure, as well as the degree

to which earnings capacities are persistent. The work of Basu and Kimball (2002)

certainly suggests complementarity is the empirically relevant case. If this is indeed

true then the results of this paper imply two of the most characteristic predictions of

the New Dynamic Public Finance literature under separability — that savings should

be deterred and that long-run immiseration characterises optimal allocations — need

to be strongly qualified.
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A Appendix

A.1 Proof of Proposition 1

For the sake of clarity we index the N elements of Θ in ascending order, so θnt > θ
m
t

whenever n > m for all n,m ∈ {1, ..., N}. We have imposed that

W
(
θnt ; θ

n
t , σ

t−1
)
= W

(
θn−1t ; θnt , σ

t−1
)

for all n ∈ {2, ..., N}, and wish to show that this implies

W
(
θnt ; θ

n
t , σ

t−1
)
≥ W

(
θmt ; θ

n
t , σ

t−1
)

for all m ∈ {1, ..., N}, given the increasing differences condition
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We first consider the case in which n > 1, and show

W
(
θnt ; θ

n
t , σ

t−1
)
≥ W

(
θmt ; θ

n
t , σ

t−1
)

for all m ∈ {1, ..., n− 1}. For m = n − 1 this holds by assumption. For m = n − 2

we have by increasing differences:

W
(
θn−1t ; θnt , σ

t−1
)
−W

(
θn−1t ; θn−1t , σt−1

)

> W
(
θn−2t ; θnt , σ

t−1
)
−W

(
θn−2t ; θn−1t , σt−1

)

But

W
(
θn−1t ; θnt , σ

t−1
)
= W

(
θnt ; θ

n
t , σ

t−1
)

and

W
(
θn−2t ; θn−1t , σt−1

)
= W

(
θn−1t ; θn−1t , σt−1

)

so the prior inequality implies

W
(
θnt ; θ

n
t , σ

t−1
)
> W

(
θn−2t ; θnt , σ

t−1
)

as required. Taking m = n− 3, we then have by increasing differences:

W
(
θn−2t ; θnt , σ

t−1
)
−W

(
θn−2t ; θn−2t , σt−1

)

> W
(
θn−3t ; θnt , σ

t−1
)
−W

(
θn−3t ; θn−2t , σt−1

)

Again, by

W
(
θn−3t ; θn−2t , σt−1

)
= W

(
θn−2t ; θn−2t , σt−1

)

this inequality collapses to

W
(
θn−2t ; θnt , σ

t−1
)
> W

(
θn−3t ; θnt , σ

t−1
)

and we can apply the earlier result

W
(
θnt ; θ

n
t , σ

t−1
)
> W

(
θn−2t ; θnt , σ

t−1
)

to assert

W
(
θnt ; θ

n
t , σ

t−1
)
> W

(
θn−3t ; θnt , σ

t−1
)

as required. The same argument can be applied for all m ∈ {1, ..., n− 1}.
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When n < N we must in the same way consider the cases of m ∈ {n+ 1, ..., N}.

Form = n+1, we have immediately by the binding restriction on n+1-types, together

with increasing differences:

0 = W
(
θn+1t ; θn+1t , σt−1

)
−W

(
θnt ; θ

n+1
t , σt−1

)

> W
(
θn+1t ; θnt , σ

t−1
)
−W

(
θnt ; θ

n
t , σ

t−1
)

as required. By similar logic, for m = n+ 2 we have:

0 = W
(
θn+2t ; θn+2t , σt−1

)
−W

(
θn+1t ; θn+2t , σt−1

)

> W
(
θn+2t ; θnt , σ

t−1
)
−W

(
θn+1t ; θnt , σ

t−1
)

and the condition

W
(
θnt ; θ

n
t , σ

t−1
)
> W

(
θn+1t ; θnt , σ

t−1
)

then delivers the required result. Again, we can apply an identical argument induc-

tively for all remaining m < N . This completes the proof.

A.2 Proof of Proposition 3

Indexing the elements of Θ in ascending order {1, ...,N}, our strategy is to construct

perturbations in both time periods that change the consumption and output levels of

the agent reporting θn in just such a way that the impact on within-period utility will

be identical whether that agent is of true type θn or θn+1. To this end, let ∆−1 (δ) be

given by:

∆−1 (δ) = (φ
c (−βδ; ct, yt, θt) , φ

y (−βδ; ct, yt, θt)) (32)

where φc (k; c, y, θ) and φy (k; c, y, θ) are defined implicitly when θ �= max {θ′′ ∈ Θ}

by the pair of equalities:

u (c+ φc (k; c, y, θ) , y + φy (k; c, y, θ) ; θ) = u (c, y; θ) + k (33)

u (c+ φc (k; c, y, θ) , y + φy (k; c, y, θ) ; θ′) = u (c, y; θ′) + k (34)

for θ′ = min {θ′′ ∈ Θ : θ′′ > θ}, and when θ = max {θ′′ ∈ Θ} by

u (c+ φc (k; c, y, θ) , y; θ) = u (c, y; θ) + k (35)

φy (k; c, y, θ) = 0 (36)

37



That is to say, φc (k; c, y, θ) and φy (k; c, y, θ) are the consumption and output incre-

ments required to increase the utility of both mimickers and truth-tellers by k units.

These functions will be uniquely defined, by the single crossing property. Similarly,

the nth row of ∆(δ)is given by:

[
φc
(
δ; ct+1, yt+1, θ

n
t+1

)
, φy

(
δ; ct+1, yt+1, θ

n
t+1

)]
(37)

where we index by type in ascending order. By construction this perturbation must

preserve incentive compatibility in the relaxed problem at t + 1, since the within-

period utility that any agent can gain from mimicking a type one lower is being

changed by the same amount (δ) as the within-period utility from truth-telling. It

must also preserve incentive compatibility at t under the relaxed problem, since its

impact on discounted expected utility in period t and earlier is zero, both for agents

of type θt and for mimickers whose type is one higher. The overall impact of the

perturbation on the present value (assessed at time t) of the resources used by the

policymaker is given by:

πΘ
(
θt
)
[φc (−βδ; ct, yt, θ

n
t )− φ

y (−βδ; ct, yt, θ
n
t )]

+ R−1t+1πΘ
(
θt
) ∑

θt+1∈Θ

πΘ
(
θt+1|θ

t
) [
φc
(
δ; ct+1, yt+1, θ

n
t+1

)

−φy
(
δ; ct+1, yt+1, θ

n
t+1

)]

We require for optimality that the derivative of this expression with respect to δ

should equal zero when δ = 0; otherwise the policymaker could use fewer resources

in obtaining the same aggregate utility. Taking the derivative gives the optimality

condition:

β [φc1 (0; ct, yt, θt)− φ
y
1 (0; ct, yt, θt)] (38)

= R−1t+1
∑

θt+1∈Θ

πΘ
(
θt+1|θ

t
) [
φc1
(
0; ct+1, yt+1, θ

n
t+1

)

−φy1
(
0; ct+1, yt+1, θ

n
t+1

)]

where φc1 denotes the derivative of φc with respect to its first argument. By total

differentiation of conditions (33) to (36) with respect to k it is easy to show:

φc1 (0; c, y, θ)− φ
y
1 (0; c, y, θ) =

1− α (c, y; θ)

uc (c, y; θ) + uy (c, y; θ)α (c, y; θ)
(39)
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The result follows.

A.3 Proof of Lemma 1

We need to show that it is possible to change the consumption and output levels of

each agent in such a way that utilities change in the manner described in the Lemma,

and ‘downwards’ incentive compatibility restrictions remain satisfied for all δ in an

open neighbourhood of 0. This requires that the following two conditions are satisfied

at t for all n ∈ {1, ..., N}:

u (cn,t + δ
c
n (δ) , yn,t + δ

y
n (δ) ; θ

n
t ) = u (cn,t, yn,t; θ

n
t ) + νnδ (40)

u
(
cn,t + δ

c
n (δ) , yn,t + δ

y
n (δ) ; θ

n+1
t

)
= u

(
cn,t, yn,t; θ

n+1
t

)
+ νn+1δ (41)

where δcn (δ) and δ
y
n (δ) are the perturbations to the nth agent’s consumption and

output levels respectively. For the Nth agent we just need:

u
(
cN,t + δ

c
N (δ) , yN,t; θ

N
t+1

)
= u

(
cN,t, yN,t; θ

N
t

)
+ νNδ (42)

and we normalise δyN (δ) = 0.
31

By the single-crossing condition higher-type agents see their utility change monoton-

ically through movements along the indifference curve of a lower-type agent, so for

small enough δ these equations must solve for unique values of δcn (δ) and δ
y
n (δ) for

all n, with the assumed Inada conditions guaranteeing interiority of the original op-

timum. These values will preserve incentive compatibility at t. The impact of the

perturbations on discounted expected utility from the perspective of prior time pe-

riods is left unchanged by the fact that
∑N

n=1 πΘ (θ
n) νn = 0, where this probability

measure is common to all true types by the iid assumption.

A.4 Proof of Proposition 5

Our aim is to construct a perturbation schedule∆(δ), to be applied in period t, whose

effect effect on the utility of an agent of type θnt will always equal νnδ, and then to

consider the marginal impact on the policymaker’s resources as δ is moved away from

zero. By Lemma 1 we know such a perturbation can be constructed in a manner that

preserves incentive compatibility, through the consumption and output perturbations

δcn (δ) and δ
y
n (δ) that are defined in the proof of that Lemma. The net cost of these

31This is analogous to the normalisation φy (θ, k; c∗, y∗) = 0 in equation (36).

39



perturbations on the policymaker’s within-period resources in t (per agent with the

relevant history) will be:
N∑

n=1

πΘ (θ
n
t ) [δ

c
n (δ)− δ

y
n (δ)]

Hence the marginal cost as δ moves away from zero will be:

N∑

n=1

πΘ (θ
n
t )

[
dδcn (δ)

dδ

∣∣∣∣
δ=0

−
dδyn (δ)

dδ

∣∣∣∣
δ=0

]

The rest of the proof is a matter of simple algebra, which we choose to omit, show-

ing that when this object is evaluated and set equal to zero the espression in the

Proposition results.32

A.5 Proof of Proposition 6

Consider the perturbation given by a movement along the within-period indifference

curve of the nth agent, with no changes to the allocations of any other agents. If

consumption and output are being jointly reduced this will move us strictly within

the constraint set of the relaxed problem, since the net impact on the utility obtainable

from reporting the relevant θt at t is zero for truth-tellers and strictly negative for

‘downwards mimickers’ (by single crossing), and expected utility in prior periods is left

completely unaffected regardless of the distribution under which it is assessed, by the

fact that all agents who remain truth-tellers at t are indifferent to this perturbation.

Hence the marginal cost per unit reduction in the utility of potential mimickers must

be weakly positive, given that the optimal solution in the relaxed constraint set solves

the general problem. From our earlier results, this implies:

τ (θnt )

uc

(
θ̂nt ; θ

n+1
t

)
(1− τ (θnt )) + uy

(
θ̂nt ; θ

n+1
t

) ≥ 0 (43)

32Details of the algebra are available on request.
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where u
(
θ̂nt ; θ

n+1
t

)
(and associated partial derivatives) once more denotes the utility

function of an agent whose type is θn+1t+1 mimicking one of type θnt+1. We have:

(
1− τ

(
θnt+1

))
= −

uy
(
θnt+1

)

uc
(
θnt+1

) (44)

> −
uy

(
θ̂nt+1; θ

n+1
t+1

)

uc

(
θ̂nt+1; θ

n+1
t+1

)

where the last inequality is an application of the single-crossing condition. Hence the

denominator in condition (43) will be strictly positive, and the result follows.

A.6 Proof of Lemma 2

We need to ensure ‘downwards’ incentive compatibility continues to hold locally at t

and t+1. The latter is simpler: it requires that the following conditions are satisfied

for agents with the relevant reporting history for all m ∈ {1, ...,N}:

u
(
c∗m,t+1 + δ

c
m,t+1 (δ) , y

∗
m,t+1 + δ

y
m,t+1 (δ) ; θ

m
t+1

)
= u

(
c∗m,t+1, y

∗
m,t+1; θ

m
t+1

)
+ νmδ (45)

u
(
c∗m,t+1 + δ

c
m,t+1 (δ) , y

∗
m,t+1 + δ

y
m,t+1 (δ) ; θ

m+1
t+1

)
= u

(
c∗m,t+1, y

∗
m,t+1; θ

m+1
t+1

)
+ νm+1δ

(46)

where δcm,t+1 (δ) and δ
y
m,t+1 (δ) are the perturbations to the mth agent’s consumption

and output levels respectively. For the Nth agent we just need:

u
(
c∗N,t+1 + δ

c
N,t+1 (δ) , y

∗
N,t+1; θ

N
t+1

)
= u

(
c∗N,t+1, y

∗
N,t+1; θ

N
t+1

)
+ νNδ (47)

and we normalise δyN,t+1 (δ) = 0.

The proof of Lemma 1 shows that these conditions can indeed be satisfied by

appropriate choice of δcm,t+1 (δ) and δ
y
m,t+1 (δ) schedules, given an interior optimum.

There remains the problem of incentive compatibility (under the relaxed problem) at

t. From the perspective of that time period the t + 1 perturbations are increasing

expected utility for potential mimickers by βδ units, whilst leaving that of truth-

tellers constant. To offset this effect we need to move along the indifference curve

of the nth agent at t to such an extent that a mimicker’s utility is reduced by an

offsetting amount. That requires δcn,t (δ) and δ
y
n,t (δ) schedules that satisfy:

u
(
c∗n,t + δ

c
n,t (δ) , y

∗
n,t + δ

y
n,t (δ) ; θ

n
t

)
= u

(
c∗n,t, y

∗
n,t; θ

n
t

)
(48)
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u
(
c∗n,t + δ

c
n,t (δ) , y

∗
n,t + δ

y
n,t (δ) ; θ

n+1
t

)
= u

(
c∗n,t, y

∗
n,t; θ

n+1
t

)
− βδ (49)

Again, by the single crossing condition the utility of the agent of type θn+1t changes

monotonically as one moves along a lower-type agent’s indifference curve, so for small

enough |δ| in an open neighbourhood of δ = 0 this is always possible.

A.7 Proof of Proposition 7

We consider a composite perturbation pair, denoted ∆(δ) and ∆−1 (δ), such that

∆(δ) raises the within-period utility of an agent of type θmt+1 by an amount νmδ at

t+ 1, where νm is the mth entry of the vector ν. By earlier arguments (c.f. proof of

Proposition 5), the marginal cost of the ∆(δ) perturbation as δ is moved away from

0, assessed from the perspective of time t, will be:

R−1t+1

[
N∑

m=1

πΘ
(
θmt+1|θ

n
t

)
νmMC

(
θmt+1

)
−

N∑

m=1

πΘ
(
θmt+1|θ

n
t

)
(νm+1 − νm)DC

(
θmt+1

)
]

This object is equal to (minus) the right-hand side of (25), multiplied by R−1t+1. By

Lemma 2 we know that we can remain within the constraint set of the relaxed problem

through these perturbations, and the fact that the solution to the relaxed problem also

solves the general problem will then imply marginal changes cannot raise a surplus.

The proof of Lemma 2 shows that incentive compatibility at t is preserved by moving

allocations along the indifference curve of the relevant truth-telling agent with the

report history θt, and doing so by an amount sufficient to reduce the within-period

utility of a mimicker by βδ units. By earlier arguments, the marginal cost of this

perturbation as δ is moved away from zero, assessed at time t, will be:

βπΘ
(
θt
)
DC (θnt )

The result then follows from the fact that the total present value of the marginal cost

of the perturbation must be zero at an optimum.

A.8 Proof of Lemma 4

It remains to establish the result for the case in which consumption and labour supply

are Edgeworth complements and productivities are iid. To put a zero lower bound

on MC (θt) in this case we need to verify that α (θt) < 1, and that the denominator

of 1−α(θt)
uc(θt)+uy(θt)α(θt)

is always positive. The latter follows straightforwardly from the
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definition of α (θt) together with (5). For the former, suppose instead that α (θt) ≥ 1

were to hold for some θt and a given report history. We argue that in this situation it

is always possible for the policymaker to generate surplus resources, whilst preserving

incentive compatibility.

Suppose we reduce the utility of an agent of type θ1t+1 by a unit through a reduction

in consumption alone. This will necessarily reduce the utility of an agent of type θ2t+1
who mimicks θ1t+1, so to preserve exact incentive compatibility at t + 1 we must

reduce the truth-telling utility of θ2t+1 by a compensating amount. Suppose this is

likewise done by reducing the consumption of that agent alone. Further reductions in

utility must then be provided to θ3t+1, again assumed to be done through consumption

changes alone, and so on up to θNt+1. The consumption of all agents will have fallen

at t + 1, and therefore their utility likewise. Suppese that the expected reduction in

t + 1 utility is some amount ν. Then incentive compatibility can be preserved from

the perspective of period t by raising the within-period utility of the relevant type

θt by an amount βν, whilst ensuring an equal effect on ‘one-higher’ minickers. But

since α (θt) < 1 this period-t utility comes at negative cost, whilst by construction

the consumption changes at t + 1 generate positive resources. Hence the combined

perturbation generates a surplus, contradicting optimality.

A.9 Proof of Proposition 9

We knowDoob’s convergence theorem applies to the non-negative martingale 1−α(θt)
uc(θt)+uy(θt)α(θt)

,

so need only show that it is not possible for this object to converge to any non-zero

value. The following Lemma is useful:

Lemma 5
τ(θnt )

uc(θ̂nt ;θn+1t )(1−τ(θnt ))+uy(θ̂nt ;θn+1t )
a.s.
→ 0 holds under an optimal plan that solves

the restricted problem.

Proof. In the iid case this follows directly from equation (22):

lim
t→∞


−πΘ

(
θnt+1|θt

) τ
(
θnt+1

)

uc

(
θ̂nt+1; θ

n+1
t+1

) (
1− τ

(
θnt+1

))
+ uy

(
θ̂nt+1; θ

n+1
t+1

)


 (50)

= −
N∑

m=n+1

πΘ
(
θmt+1|θt

)
lim
t→∞

[
1− α

(
θmt+1

)

uc
(
θmt+1

)
+ uy

(
θmt+1

)
α
(
θmt+1

)
]

+ πΘ
(
θt+1 > θ

n
t+1|θt

) ∑

θt+1∈Θ

πΘ (θt+1|θt) lim
t→∞

[
1− α (θt+1)

uc (θt+1) + uy (θt+1)α (θt+1)

]

= 0
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In the Markov case we know that equation (22) must hold in periods immediately

following those in which θ = θN , and so if one indexes by T the (infinite) set of

periods in which this is the case, and denotes by t (T ) the (conventional) time period

corresponding to the T th occasion on which θ = θN has obtained along the given

sample path, we must have:

lim
T→∞

[
−πΘ

(
θnt(T )+1|θt(T )

)
(51)

·
τ
(
θnt(T )+1

)

uc

(
θ̂n
t(T )+1; θ

n+1
t(T )+1

)(
1− τ

(
θn
t(T )+1

))
+ uy

(
θ̂n
t(T )+1; θ

n+1
t(T )+1

)




= −
N∑

m=n+1

πΘ
(
θmt(T )+1|θt(T )

)
lim
T→∞




1− α
(
θmt(T )+1

)

uc

(
θm
t(T )+1

)
+ uy

(
θm
t(T )+1

)
α
(
θm
t(T )+1

)




+ πΘ
(
θt(T )+1 > θ

n
t(T )+1|θt(T )

)

·
∑

θt(T )+1∈Θ

πΘ
(
θt(T )+1|θt(T )

)
lim
T→∞

[
1− α

(
θt(T )+1

)

uc
(
θt(T )+1

)
+ uy

(
θt(T )+1

)
α
(
θt(T )+1

)
]

= 0

But if

τ
(
θnt(T )+1

)

uc

(
θ̂n
t(T )+1; θ

n+1
t(T )+1

)(
1− τ

(
θn
t(T )+1

))
+ uy

(
θ̂n
t(T )+1; θ

n+1
t(T )+1

) = 0

holds at the limit as T becomes large then we must also, at the same limit, have an

identical set of zero restrictions in period t (T ) + 2, by equations (25) and (29). By

induction this can then be extended to period t (T ) + n for all n > 1, and the result

follows.

This Lemma implies two alternatives: either

τ (θnt )
a.s.
→ 0

or

uc

(
θ̂nt ; θ

n+1
t

)
(1− τ (θnt )) + uy

(
θ̂nt ; θ

n+1
t

)
a.s.
→ ∞
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Suppose the latter were true. Expanding out the definition of α (θnt ) we have:

uc (θ
n
t ) + uy (θ

n
t )α (θ

n
t ) =

uc

(
θ̂nt ; θ

n+1
t

)
− uy

(
θ̂nt ; θ

n+1
t

)
uc(θnt )

uy(θnt )

1−
uy(θ̂nt ;θn+1t )
uy(θnt )

(52)

> uc

(
θ̂nt ; θ

n+1
t

)
− uy

(
θ̂nt ; θ

n+1
t

) uc (θnt )
uy (θnt )

= uc

(
θ̂nt ; θ

n+1
t

)
+ uy

(
θ̂nt ; θ

n+1
t

) 1

(1− τ (θnt ))

If

uc

(
θ̂nt ; θ

n+1
t

)
(1− τ (θnt )) + uy

(
θ̂nt ; θ

n+1
t

)
a.s.
→ ∞

then

uc

(
θ̂nt ; θ

n+1
t

)
+ uy

(
θ̂nt ; θ

n+1
t

) 1

(1− τ (θnt ))
a.s.
→ ∞

must also hold, since (1− τ (θnt )) ∈ [0, 1] follows from the definition of τ and Propo-

sition 6. Hence we must also have

uc (θ
n
t ) + uy (θ

n
t )α (θ

n
t )

a.s.
→ ∞

This in turn implies 1−α(θnt )

uc(θnt )+uy(θ
n
t )α(θ

n
t )

can only converge to a non-zero limit if |α (θt)|

is itself always infinite at that limit. But since we know α (θt) = 0 when θt = θ
N we

can rule that out.

The alternative is that τ (θnt )
a.s.
→ 0. In this case we have uc (θ

n
t ) = −uy (θ

n
t ) at the

limit, and so
1− α (θnt )

uc (θnt ) + uy (θ
n
t )α (θ

n
t )
=

1

uc (θnt )

Hence the inverse of the marginal utility of consumption must be converging to a

common value for all agents. But since uc (θ
n
t ) = −uy (θ

n
t ) the marginal disutility of

production must also be converging to the same value across agents. Suppose this

were a finite value. If uc is common across types and uc = −uy holds then it is easy

to show that utility must be decreasing in type. This is clearly inconsistent with

incentive compatibility, which is enough to rule out 1−α(θnt )

uc(θnt )+uy(θ
n
t )α(θ

n
t )

converging to a

non-zero value in this case too.
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